
Designing and Managing for Space Radiation Effects on Devices

- ☐ Kenneth A. LaBel
- ☐ Head, Radiation Effects and Analysis Section
- □ NASA/GSFC Code 735.1
- □ ken_label@ccmail.gsfc.nasa.gov
- ☐ Michele M. Gates
- ☐ Radiation Effects and Analysis Section

Today's Topics:

- ☐ Review of Space Radiation Environment and Electronics ☐ Radiation Management - A systems engineering perspective ☐ Mission Requirements - What you need and ☐ Specifying Parts for Single Event Effects
- ☐ Procuring Parts Caveat Emptor!
- ☐ Ground Radiation Tests
- ☐ Living with Radiation methods of dealing with the problem parts
- ☐ Miscellaneous

Two Main Effects on Electronics

Total Dose (ID) Consistive long term

Single Event Effects (SEE) • Event caused by a single energe May cause soft or hard errors bit flips in memory or register, tra ruch as burnout or latchup May NOT be mitigated by shielding

Why worry? - Samples of Radiation-induced Spacecraft Anomalies

☐ Single Event Upsets (SEUs) have been verified in the space
radiation environment
SMM, TDRS-1, HST, Magellan, NOAA-10, Mars Observer,
et al
☐ Failures due to SEEs (either SEUs or Single Event Latchup) 2
examples
GPS was uncontrollable for two months following 4/83 solar
flare
☐ ESA ERS-1 instrument failure due to SEL (first
proton-induced SEL verified in space)
☐ Total dose degradation of solar arrays during solar flares has
been well-documented

Emerging Commercial Technologies in the Space Radiation Environment

- ☐ Provide a "Better, Faster, Cheaper" spacecraft
 Higher density with decreased device geometry
 Increased performance
 Easier path using COTS development tools
 Reduced integration time
 Decreased lead times versus RH parts procurement
 ☐ The Space Radiation Environment may be harsh on these
- The Space Radiation Environment may be harsh on these devices

 Higher SER acquitivity
- Higher SEE sensitivity Lower TD tolerance
- ☐ System design may be used to compensate, but devices require testing in order to determine viability

Mission Requirements - What you need and why

	ying the Space Radiation Environmen
☐ Tota	1 Ionizing Dose (TID) - usually a dos
	h curve
	nic Ray Spectra (or LET spectra)
☐ Trap	ped Proton and Electron Curves
	r flare (or solar proton event) spectra
for s	olar max
☐ For	solar arrays: 1 MeV equivalents of
	on and electron spectras

TIL

A dose depth curve shows TID versus the
amount of shielding
☐ Note that there are three different shielding
models used and they are vastly different
☐ Center of Al sphere is the most
conservative, Finite Al slab is the least
conservative, semi-infinite slab is between
the two
☐ There are many components that contribute

to TID: protons, electrons, Bremmstrahlung,

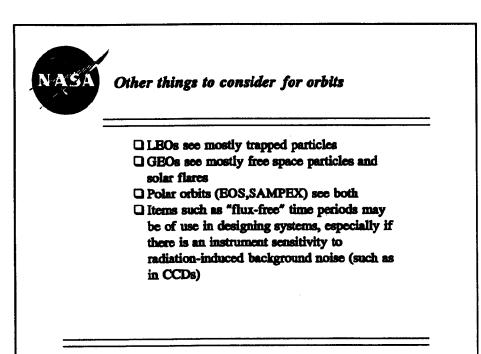
solar flares, etc ...

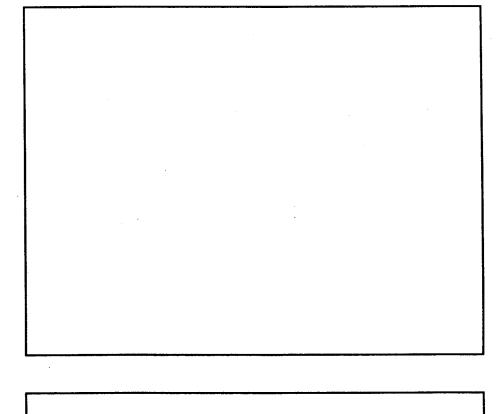
A note to Project Managers - specifying one TID number for box components

- ☐ EXPLICITE SAFETY MARGINS are NOT included in traditional environmental studies
- □ A rule of thumb is to either use a nominal shielding density (70-140 mills) and the Center of Al spheres dose at that shielding or place a factor of 3 to 10 on the TID from the finite slab curve. This is not to be used as specification, only as a rough approximation.
- ☐ Underspecifying can lead to mission failure, overspecifying may become a cost and schedule driver.

Cosmic Ray (or LET) Spectra

- ☐ These are the "free space" particles of galactic or solar origin (earth's magnetic field provides an effective shield)
- ☐ Integral LET spectra is given for flux (#/particles per day) versus LET (energy lost/deposited as an ion passes through a medium)
- ☐ Used for SEE analysis (i.e., how many particles can cause an SEE based on device's sensitivity)
- ☐ LET is usually discussed in MeV/(mg/cm2)
- ☐ Cosmic rays are severely attenuated by the earth's magnetic field (geomagnetic cutoff).


Trapped Proton and Electron Spectra


- ☐ These are the particles trapped within the earths magnetic fields
- ☐ Used for TID and SEE analyses
- ☐ Given in integral flux per day or by mission fluence versus particle energy

Solar flare spectra

- ☐ Provides a confidence level for solar proton events during solar max
- ☐ A conservative assumption is one AL solar flare per year
- ☐ Solar flares are severely attenuated by earth's magnetic field, but may cause enhancements (ie, increased particles) in the trapped proton belts for some time period post-flare

Problem: Why different groups make different radiation predictions

☐ Different input models (solar flare,	trapped
particles, cosmic ray, etc)	
☐ Different magnetic field models	

- ☐ Different assumptions on "weather" conditions
- ☐ Different components in model
- ☐ Time period used: Max or Min

	,
NASA	

Bottom line

- ☐ It pays to have a qualified party prepare the radiation environment for a spacecraft (GSPC Radiation Physics Office E.G. Stassinopoulos)
- ☐ Interpretation is not straightforward. Help is available through Radiation Effects and Analysis Section (735.1) and/or Stass
- ☐ Do NOT use tools such as ENVIRONET as anything more than a learning tool. A tool's result is only as good as its user input. Knowledge in the wrong hands can be dangerous.

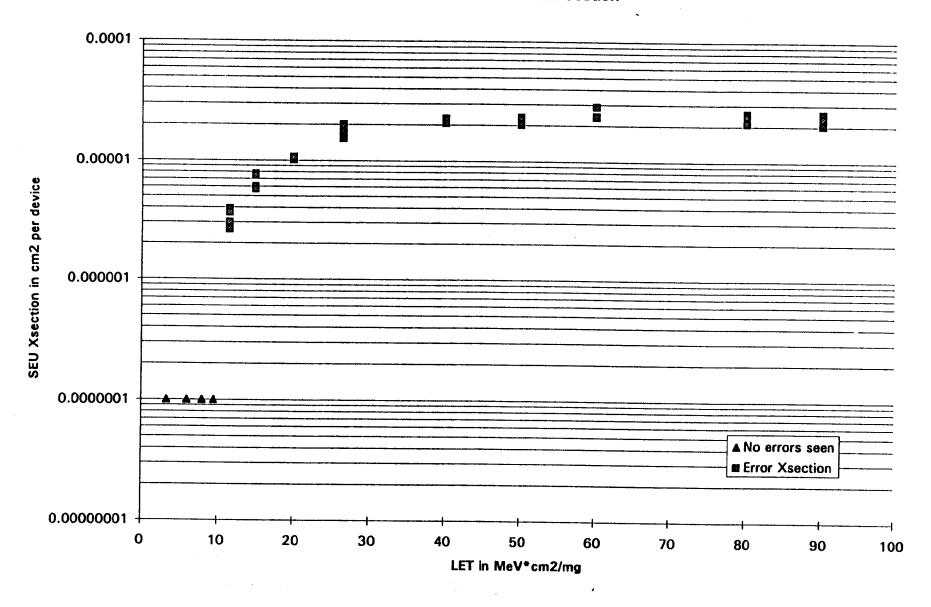
Procuring parts for the space radiation environment

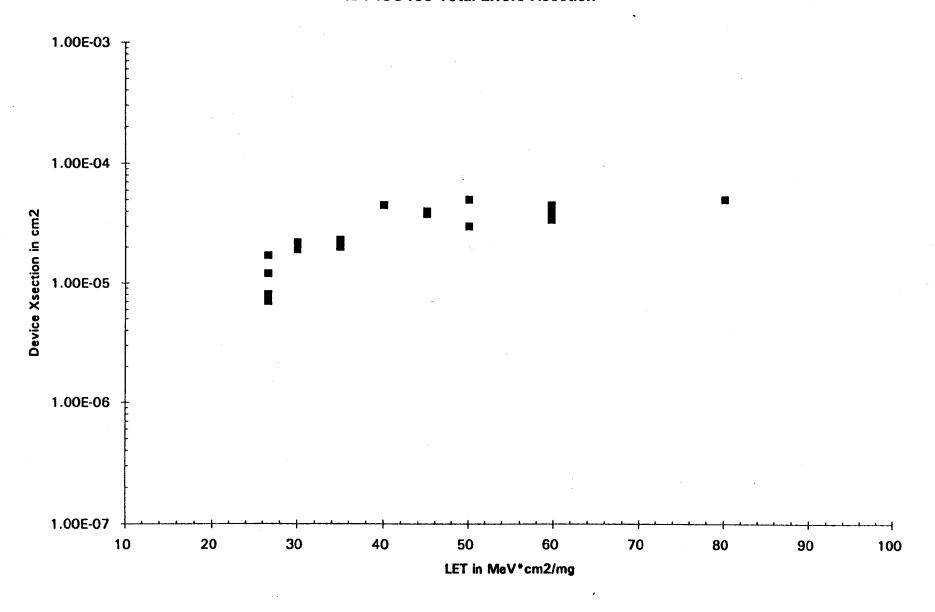
- ☐ Both TID and SEE specifications should be included
- □ TID should be given in N krads(Si) as a minimum hardness. N is mission specific.
- ☐ SEE is not as simple. What follows is a DRAFT generic specification.

Picking parts for radiation reasons: Pay Attention!

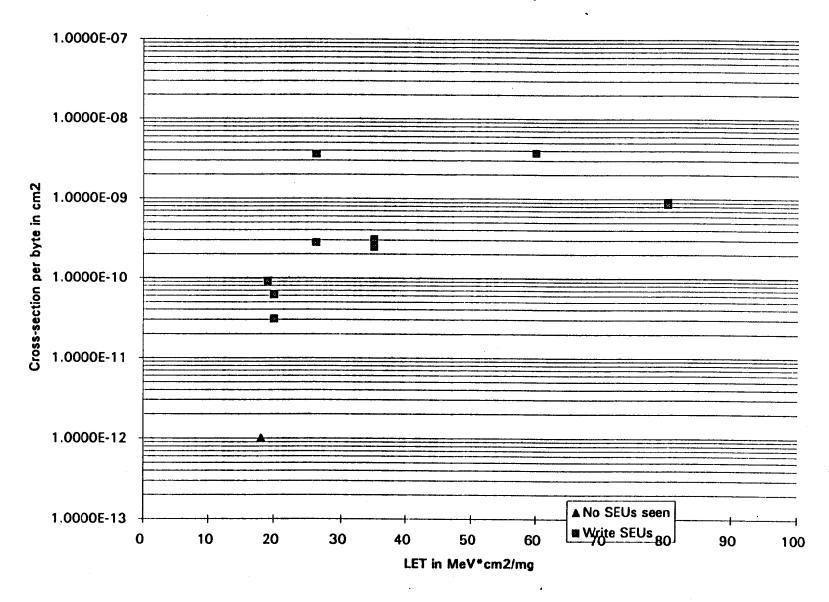
- ☐ Golden rule: Never trust a vendor (especially their salespeople)
- ☐ Digital: CMOS/SOS is hard! Otherwise, there are few generalities. Bipolar does not equal rad hard (necessarily).
- ☐ Goddard PPL does NOT convey that a part that is listed is rad hard! This is a problem.
- ☐ All parts need to be characterized for the radiation environment or be guaranteed by the vendor with Code 300 approval

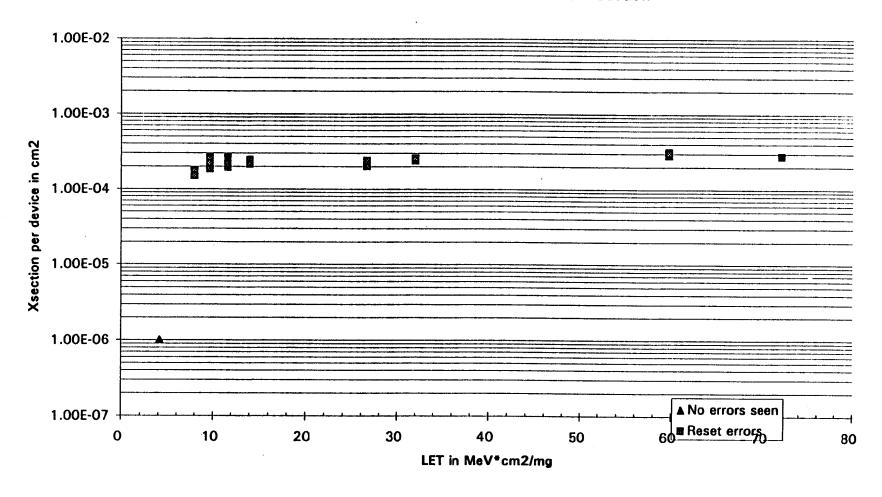
General SEU Info and Parts

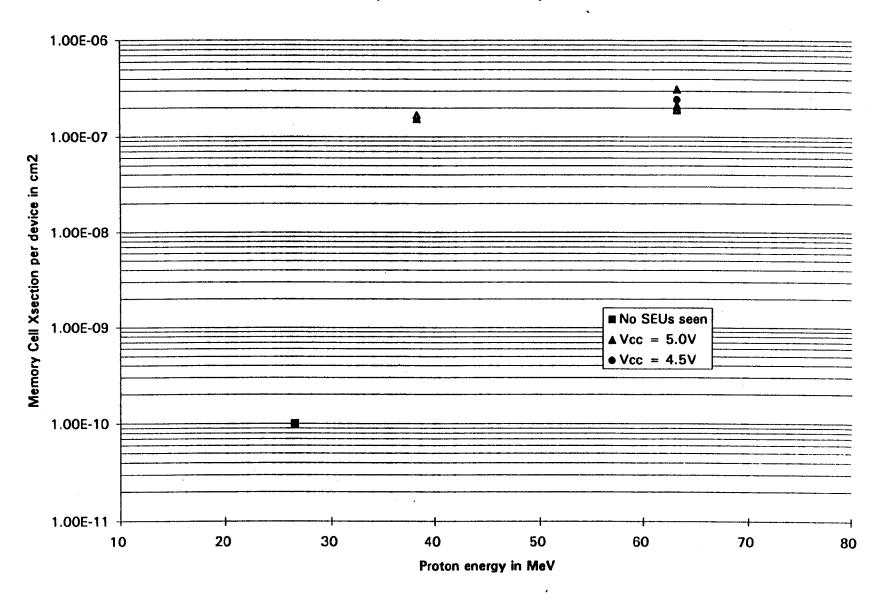

- ☐ Key Parameters for parts: LET threshold (LETth) and saturation cross section (experimentally determined parameters).
- ☐ LETth is sometimes defined differently by different test groups. Examples can be: taking the LET value at 10 % or 1% of the saturation cross section.
- ☐ This can be orders of magnitude different than the JEDEC recommended definition: the minimum LET value that causes an effect to the device at a particle fluence of 1E7 per cm2.
- ☐ Cross-section is defined during ground experimentation as: cross-section in cm2 =N SEUs / F Particles/cm2.
- ☐ An LETth over 35 is good, under 15 may have potential proton effects as well.


How SEU heavy ion testing should be performed - Mission-specific testing (1)

- ☐ Many devices have variable SEU sensitivities based on how they are going to be used
 - ☐ Examples: clock rate, data pattern, operating mode, voltage levels
- ☐ Test setup should exercise device in a manner that simulates how it may be used in flight


ATMEL 22V10 PAL Error Cross-section


IDT49C460 Total Errors Xsection


HM58C1001 EEPROM Write Errors - Byte Mode

Modular Devices 2690R DC-DC Converter "Reset" Xsection

Hitachi DRAM Memory Cell Proton SEU - Dynamic Mode

Figure

V. SUMMARY

The findings of these tests are interpreted in the following.

We typically divide SEE test results into the following four categories.

Category 1 - Recommended for usage in all spaceflight applications.

Category 2 - Recommended for usage in spaceflight applications, but may require some SEE mitigation techniques.

Category 3 - Recommended for usage in some spaceflight applications, but requires extensive SEE mitigation techniques or SEL recovery mode..

Category 4 - Not recommended for usage in any spaceflight applications.

Category 3 devices for this test trip are: All the 80386 and 80387 devices tested.

Category 4 devices for this test trip are:

All the 82380 devices. They may be used but require very extensive SEU and SEL mitigation.

SEU Mitigation Examples - memories and data streams (1)

	Parity	che	ck
--	---------------	-----	----

- ☐ Counts the number of ones in a memory address or data stream
- ☐ May be even or odd
- ☐ Only detects if wrong number of ones exist. Does NOT detect which bit(s) or any method of correcting
- ☐ Can be done in H/W or S/W
- ☐ Example is a 512x9 FIFO. Use first 8 bits as data, ninth as parity bit.

SEU Mitigation Examples - memories and data streams (2)

☐ Hamming Code

- ☐ Simple block error code that detects the position of a single error and the existence of more than one error
- ☐ Normally described as single bit correct, double bit detect.
- ☐ Can be done in H/W (usual method) or S/W
- ☐ Example: 72-bit data path has 8 bits added for Hamming code (i.e., a 80-bit wide path with overhead)

SEU Mitigation Examples - memories and data streams (3)

☐ Other Block Codes

□ BCH

- ☐ Moderately powerful encoding scheme capable of detecting multiple errors in a data path
- ☐ Example: (1023, 993, 3) = 993 bits of data, 30 bits of code (overhead) capable of correcting up to 3 bits in error.
- ☐ Reed-Solomon
- ☐ Very powerful encoding scheme able to detect and correct consecutive and multiple errors in a data path
- □ Example: (255,223) = 223 bytes of data, 32 bytes of overhead with the ability to correct 16 consecutive bytes in error. This particular example is using NASA VLSI Design Center's rad-hard encoder.

SEU Mitigation Examples - memories and data streams (4)

☐ Convolutional encoding

- Differ from block coding by interleaving check bits continuously in the data stream
- ☐ Good for mitigating isolated burst noise.

 An example is threshold decoding were 4 consecutive bits can be corrected assuming the next 8 bits are error free

SEU Mitigation Examples - memories and data streams (5)

☐ System level protocol	
☐ Best description is by example: MIL-STD-1773 Piber ()ptic
Data Bus	
Overtop of the physical layer of hardware is a standar	rd
protocol. Several error detection schemes are implementation	ented
including: parity (described earlier) and non-valid	
Manchester encoding.	
The standard protocol has an option to retransmit (ret	гу)
1773 bus transactions if they fail (up to three times is possible).	1
☐ Thus, the error detection is via normal methods, whill correction is via retransmission.	e the

SEU Mitigation Examples - Other H/W and systems

☐ Watchdog time	ers
-----------------	-----

- ☐ Can be implemented at multiple levels: subsystem-to-subsystem, box-to-box, board-to-board, device-to-device, etc...
- ☐ Can be implemented using hardware, software, or a combination thereof.
- ☐ Typically thought of as an "I'm okay" method:
 - □ Example 1:Device A has to say "I'm okay" to an independent device B(timer, interrupt controller,...) on a periodic basis. If A fails to do so within an allocated time period, device B initiates an action (soft reset, power reset, power removal, switch to redundant unit, safehold, telemetry, command, etc...)
- ☐ Example 2: Passive timeout. If no uplink is received in some timeframe, reset to the receiver may take place.

SEU Mitigation Examples - Other H/W and systems

- ☐ Redundancy (warm or cold spare)
 - ☐ Backup devices/boxes/systems that sometimes have cross-strapping so no performance hit occurs.
 - ☐ Example: MIL-STD-1773 is fully redundant with an A side an a B side. If a 1773 bus transaction fails on bus A, there is the option of retrying on the B bus.

SEU Mitigation Examples - Other H/W and systems

☐ Lockstep systems

- ☐ Two circuits/systems running synchronously. If their outputs do not agree, an error has potentially occurred. Reset, command, etc....
- ☐ Voting schemes
- ☐ Three or more systems providing a response. Pick the answer that corresponds to two.

Examples of System Compensation for SEE

Solid State Recorders

• Utilizes single bit energonizeston, doubtle bit detection (EDAC)

• No lost data for TOMS/Meteor-3 (Insuched 1/91) or SAMPEK (Insuched 1/92)

• Davious characterized for

SEP prior to flight

SEDS MIL-STD-1773 Piber
Optic Data Bus

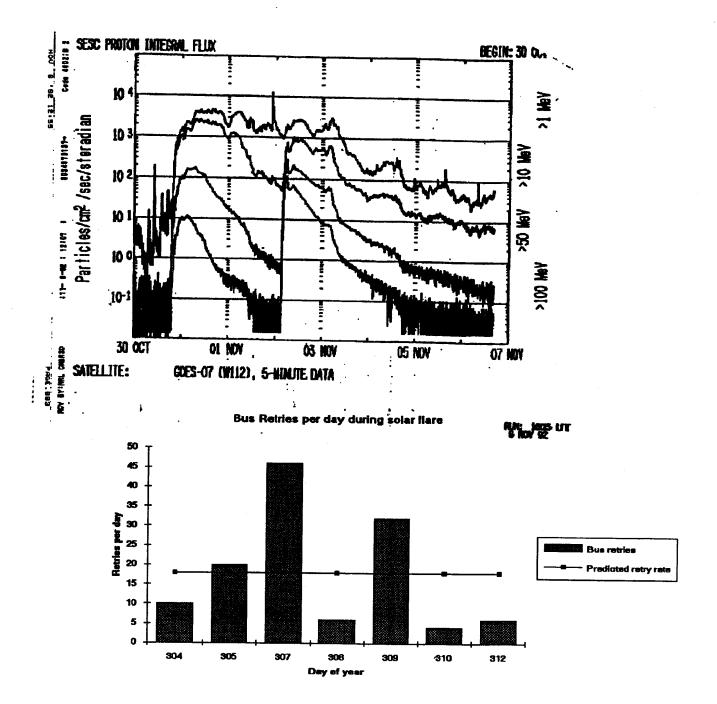
• Utilizes 1773 protocol error detection as
well as automatic message settles

• Pully Successful operation including a
large solar flare time period

• Devices theroughly characterized and
modelled prior to flight

GSFC resources available

☐ Goddard has many resources to aid designers including:
☐ EG Stassinopoulos, Radiation Physics Office, 220-3114
(Environment and phyics properties)
☐ Ken LaBel, Radiation Effects and Analysis Section, x6-9936
(SEU testing, circuit design, parts performance)
☐ Kusum Sahu, Paramax - Code 311, 731-8954 (TID testing,
parts selection)
☐ Note: testing varies greatly in price depending on complexity
and urgency of work
☐ Databases of parts
☐ Kusum and Ken at GSPC, JPL Radatabank
(http://keyvan.jpl.nasa.gov), DNA's DASIAC (ERRIC),
NRL's REDEX



Hot topics

Radiation effects and analysis home page

☐ http://flick.gs	sfc.nasa.go	v/radhom o	e.htm
O on-line envir	onmental o	overview,	test data,
flight data, e	xperiments	, etc	

